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Abstract. We address a problem of identifying nodes having a high
centrality value in a large social network based on its approximation
derived only from nodes sampled from the network. More specifically,
we detect gaps between nodes with a given confidence level, assuming
that we can say a gap exists between two adjacent nodes ordered in
descending order of approximations of true centrality values if it can
divide the ordered list of nodes into two groups so that any node in one
group has a higher centrality value than any one in another group with
a given confidence level. To this end, we incorporate confidence intervals
of true centrality values, and apply the resampling-based framework to
estimate the intervals as accurately as possible. Furthermore, we devise
an algorithm that can efficiently detect gaps by making only two passes
through the nodes, and empirically show, using three real world social
networks, that the proposed method can successfully detect more gaps,
compared to the one adopting a standard error estimation framework,
using the same node coverage ratio, and that the resulting gaps enable
us to correctly identify a set of nodes having a high centrality value.

Keywords: Gap analysis · Error estimation · Resampling ·
Node centrality

1 Introduction

Recently, social media such as Facebook, Digg, Twitter, etc. becomes an extremely
popular communication tool on a global scale, and generates large-scale social
networks on the web. Such networks allow us to share a wide variety of topics
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that have been posted on social media because those topics can rapidly and
widely spread through the networks. Thus, in recent years, social media plays
an important role as information infrastructure, and social networks constructed
on it have been extensively investigated from various angles [4,8].

In such social network analysis, we can get an insight into some features of
a given network by using the node centrality [1,3,5,7,14], which characterizes
nodes in the network based on its topology. Typical ones include the degree,
closeness, and betweenness centralities. Some of them such as the degree cen-
trality are based only on the information of neighboring nodes of a target node,
but some others are also on global structure of a network. For example, to com-
pute the betweenness centrality, we have to enumerate paths between arbitrary
node pairs, which is computationally very expensive. Since a social network on
the web can easily grow in size, it is crucial to efficiently compute values of such
a centrality to analyze a large network.

To this kind of problem on scalability, sampling-based approaches have been
proposed so far [6,10,11], which investigate sampling methods that can obtain
better approximations of true centrality values. Those methods are roughly cate-
gorized into uniform sampling, non-uniform sampling, and traversal/walk-based
sampling. In contrast to them, we proposed a framework that ensures the accu-
racy of the approximations under uniform sampling [13], in which we estimated
the approximation error referred to as resampling error by considering all pos-
sible partial networks of a fixed size that are generated by resampling nodes
according to a given coverage ratio and approximated centrality values derived
from them. It is empirically shown that the resampling-based framework provides
a tighter approximation error with a higher confidence level than the traditional
standard error in statistics under a given sampling ratio.

Unlike these existing approaches, in this paper, we consider detecting a set
of nodes having a high centrality value only from approximations derived from
sampled nodes with an adequate confidence level, instead of trying to accurately
estimate the centrality value itself. We are interested in such nodes because
they tend to play an important role for information diffusion on the network.
To this end, we consider a list of nodes in descending order of the approximate
centrality value, and devise an algorithm to efficiently detect gaps that exist
between two adjacent nodes in the list. Here, we say a gap, or a boundary
exists between two adjacent nodes in the list if it can divide the ordered list of
nodes into two groups so that any node belonging to one group has a higher
centrality value than any node in another group with a given confidence level.
We incorporate confidence intervals of true centrality values for each node to
detect such gaps, and adopt the above resampling-based estimation framework
to estimate the confidence intervals as accurately as possible. The results of
extensive experiments on three real world social networks demonstrate that using
the resampling error for detecting gaps outperforms using the standard error in
terms of the number of gaps detected, and that the resulting gaps allow us to
correctly identify nodes having a high centrality value.



Resampling-Based Gap Analysis for Detecting Nodes with High Centrality 137

2 Resampling-Based Estimation Framework

In this section, according to the work [13], we revisit the resampling-based frame-
work for estimating an approximation error with a given confidence level and its
application to computing the node centrality.

2.1 General Framework

Let S be a set of objects such that |S| = L, and f a function that assigns a value
to each object s ∈ S. Then, the problem we address is estimating the average μ
over the set of entire values {f(s) | s ∈ S} only from its arbitrary subset of partial
values {f(t) | t ∈ T ⊂ S}. Let μ(T ) be the partial average over a subset T whose
number of elements is N , i.e., μ(T ) = (1/N)

∑
t∈T f(t). Then, we consider using

this partial average μ(T ) as an approximate solution of the true average μ and
estimating an expected approximation error RE(N), referred to as resampling
error, which is the difference between μ and μ(T ), with respect to the number
of elements N , if L is too large to compute μ. Given T ⊂ 2S that is a family
of subsets of S such that |T | = N for T ∈ T , the resampling error RE(N) is
defined as follows:

RE(N) =
√
〈(μ− μ(T ))2〉T∈T =

√
√
√
√
(
L
N

)−1 ∑

T∈T

(

μ− 1
N

∑

t∈T

f(t)

)2

= C(N)σ,

(1)
where the factor C(N) =

√
(L−N)/((L− 1)N) and σ =√

L−1
∑

s∈S(f(s)− μ)2 is the standard deviation. Note that since the
estimation error of Equation (1) is regarded as the standard deviation with
respect to the number of elements N , we can claim from a statistical viewpoint
that for a given subset T such that |T | = N , and its partial average value
μ(T ), the probability that |μ(T ) − μ| is larger than 1.96 × RE(N), is less than
5%. In other words, the range of μ(T ) ± 1.96 × RE(N) is regarded as the 95%
confidence interval of μ.

On the other hand, we can consider a standard approach to this problem that
is based on the i.i.d. (independently identical distribution) assumption. More
specifically, for a given subset T that has N elements, that is, T = {t1, · · · , tN},
it is assumed that each element t ∈ T is independently selected according to
some distribution p(t) such as an empirical distribution p(t) = 1/L. Then, the
standard error SE(N) based on this assumption is defined as follows:

SE(N) =
√
〈(μ− μ(T ))2〉 =

√√√√∑

t1∈S

· · ·
∑

tN∈S

(
μ− 1

N

N∑

n=1

f(tn)

)2 N∏

n=1

p(tn) = D(N)σ,

(2)
where D(N) = 1/

√
N and σ is the standard deviation.

It is noted that the difference between Equations (1) and (2) is only their
coefficient terms, C(N) and D(N), and that C(N) ≤ D(N), C(L) = 0 and
D(L) �= 0. Namely, RE(N) ≤ SE(N) for any N , and RE(N) becomes 0 when
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N = L, but not SE(N). Note that the true standard deviation σ is needed
in both Equations (1) and (2), but in practice, we can use, instead of σ, the
standard deviation σ′ that is derived from a subset S′ (⊂ S) such that |S′| = L′

is small enough to compute σ′ within a reasonable time if |S| is too large to
compute σ, which is just the case where sampling is needed.

2.2 Application to Node Centrality Estimation

Next, we present the way to apply the above estimation framework to node
centrality estimation of a social network that is represented as a directed graph
G = (V,E), where V and E (⊂ V × V ) are the sets of all the nodes and the links
in the network, respectively. Here, we consider two node centrality measures, the
closeness centrality and the betweenness centrality as in [13].

The closeness clsG(u) of a node u on a graph G is defined as

clsG(u) =
1

(|V | − 1)

∑

v∈V,v �=u

1
splG(u, v)

, (3)

where splG(u, v) stands for the shortest path length from u to v in G, and we
set splG(u, v) = ∞ when node v is unreachable from node u on G. Intuitively,
a node u has a high value for this closeness centrality if a large number of
nodes are reachable from u within relatively short path lengths. A standard
technique for computing clsG(u) of each node u ∈ V is the burning algorithm
[12] whose computational complexity is O(|E|). Thus, it takes a large amount of
computation time for a huge social network consisting of millions of nodes. To
apply the above estimation framework to the computation of an approximation
of the closeness centrality clsG(u) of each node u ∈ V , we instantiate the set
of objects S and the function f to this problem. In fact, we consider Su =
V \{u} as the set S and fu(v) = 1/splG(u, v) as the function f , and thereby can
calculate a partial average value clsG(u;T ) from an arbitrary subset T ⊂ Su∪{u}
and its approximation error, RE(u; |T |) and SE(u; |T |), according to the above
framework.

Next, the betweenness btwG(u) of a node u on a graph G is defined as

btwG(u) =
1

(|V | − 1)(|V | − 2)

∑

v∈V,v �=u

⎛

⎝
∑

w∈V,w �=u,w �=v

nspG(v, w;u)
nspG(v, w)

⎞

⎠ , (4)

where nspG(v, w) is the number of the shortest paths from v to w in G, and
nspG(v, w;u) is the number of the shortest paths from v to w that pass through
node u. Thus, the betweenness of a node u becomes high if a large number of
shortest paths between two nodes pass through node u. The Brandes algorithm
[2] is a standard technique for computing btwG(u) of each node u ∈ V and its
computational complexity is O(|E|). Thus, it requires a large amount of com-
putation time for a large social network, too. Again, we consider instantiating
S and f of the above estimation framework for computing an approximation
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of the betweenness centrality btwG(u). More specifically, we regard the expres-
sion inside the large parentheses in Equation (4) as a function btwG(u; v), the
betweenness of node u that restricts its starting node to v. Then, by considering
Su = V \{u} and fu(v) = btwG(u; v)/(|V |−2), we can calculate a partial average
value btwG(u;T ) from an arbitrary subset T ⊂ Su∪{u} and its estimation error,
RE(u; |T |) and SE(u; |T |), based on the above estimation framework.

3 Gap Detection Method

In this section, we consider the way to detect a set of nodes having a high
centrality value with a given confidence level based only on centrality values
estimated from a subset of nodes in a network. First of all, we formally define the
problem we address here. For a network G(V,E), let μG(v) be the true value of
a certain centrality measure for node v ∈ V , μG(v;T ) be its estimation derived
only from a subset of nodes T ⊆ V , and σ(v; |T |) be its approximation error
such as RE(v; |T |) and SE(v; |T |). In addition, given a node v, let VH(v;T ) =
{u ∈ V ;μG(u;T ) ≥ μG(v;T )} and VL(v;T ) = {w ∈ V ;μG(w;T ) < μG(v;T )}
be disjoint partitions of V with respect to μG(v;T ). Then, incorporating the
confidence interval estimation in statistics, the problem can be defined as finding
out all nodes v ∈ V that satisfy the following inequality for ∀u ∈ VH(v;T ) and
∀w ∈ VL(v;T ):

μG(u;T )− z(α) · σ(u; |T |) > μG(w;T ) + z(α) · σ(w; |T |) (5)

where 0 < α < 1 and z(α) is the upper α/2 critical value of the standard nor-
mal distribution. In other words, μG(u) > μG(w) holds for ∀u ∈ VH(v;T ) and
∀w ∈ VL(v;T ) with the confidence level C = 100(1 − α)%. Here, the upper
half set VH(v;T ) is a set that we want to identify, and we say that a gap exists
between v and v′ ∈ arg maxw∈VL(v;T ) μG(w;T ). It is obvious that a straightfor-
ward approach to this problem requires the computational complexity of O(|V |3)
because it has to check |VH(v;T )||VL(v;T )| pairs of nodes for each v, which is
not acceptable when a given social network is very large.

To cope with this, we first consider a lower error bound of
VH(v;T ) and an upper error bound of VL(v;T ), respectively defined as
LB(VH(v;T );α) = minu∈VH(v)(μG(u;T )−z(α)σ(u; |T |)) and UB(VL(v;T );α) =
maxw∈VL(v)(μG(w;T )+z(α)σ(w; |T |)). Hereafter, for simplicity, LB(VH(v;T );α)
and UB(VL(v;T );α) are denoted by LB(VH(v);T, α) and UB(VL(v);T, α),
respectively. Then, we focus on the fact that the above problem is reduced to find-
ing all nodes v ∈ V that satisfy the relation LB(VH(v);T, α) > UB(VL(v);T, α)
for given α. Since both LB(VH(v);T, α) and UB(VL(v);T, α) can be simultane-
ously computed for arbitrary v ∈ V by making only one pass through V , the
total computational complexity becomes O(|V |2), which is smaller than O(|V |3),
but it is still hard to find all of such nodes when the size of a network gets larger.

Thus, we further consider an ordered list (v1, v2, · · · , v|V |) of nodes in V
resulted from sorting them in descending order of the value of μG(v;T ), i.e.,
μG(vi;T ) ≥ μG(vi+1;T ) for i ∈ {1, · · · , |V | − 1}. Then, LB(VH(vk);T, α) is
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recursively defined as LB(VH(vk);T, α) = min(LB(VH(vk−1);T, α), μG(vk;T )−
z(α)σ(vk; |T |)). As well, UB(VL(vk);T, α) is defined as UB(VL(vk);T, α) =
max(UB(VL(vk+1);T, α), μG(vk+1;T ) + z(α)σ(vk+1; |T |)). Considering these
definitions, we can compute LB(VH(v);T, α) and UB(VL(v);T, α) for every node
v ∈ V by making only one pass, each, through the list (v1, v2, · · · , v|V |), respec-
tively, which implies that we can detect all gaps by making two passes through
the ordered list. More specifically, in the first pass, referred to as the forward
step, we compute LB(VH(vk);T, α) varying k from 1 to |V |−1, and then, in the
second pass called the backward step, we compute UB(VL(vk);T, α) and detect
a gap if LB(VH(vk);T, α) > UB(VL(vk);T, α) holds varying k from |V | to 2. The
computational complexity of this method is governed by that of its sorting pro-
cess, and thus becomes O(|V | log |V |), which enables the practical gap analysis
even for a large social network. The procedure is summarized as follows:

1. A ← ∅, LB(VH(v1);T, α) = μG(v1;T ) − z(α)σ(v1; |T |)), and
UB(VL(v|V |);T, α) = 0;

2. (Forward step) For k = 2 to |V | − 1,
LB(VH(vk);T, α) = min(LB(VH(vk−1);T, α), μG(vk;T )− z(α)σ(vk; |T |));

3. (Backward step) For k = |V | − 1 to 2,
(a) UB(VL(vk);T, α) = max(UB(VL(vk+1);T, α), μG(vk+1;T ) +

z(α)σ(vk+1; |T |));
(b) A← A ∪ {vk} if LB(VH(vk);T, α) > UB(VL(vk);T, α);

4. Output A, and terminate.

We consider three kinds of methods by adopting different definitions of the
estimated error σ(v; |T |), which are σ(v; |T |) = 0, σ(v; |T |) = SE(v; |T |), and
σ(v; |T |) = RE(v; |T |). We refer to these methods as the naive, SE, and RE
method, respectively. Note that the naive method assumes μG(v;T ) = μG(v).
Thus, it determines that there exists a gap between nodes vk and vk+1 for every k
such that μG(vk;T ) �= μG(vk+1;T ). On the other hand, since SE(v; |T |) overesti-
mates the approximation error of μG(v;T ) compared to RE(v; |T |), the number
of gaps detected by the SE method becomes less than that by the RE method.
For more details, we empirically compare these methods through experiments
on real world social networks as described below.

4 Experiments

4.1 Datasets

We empirically evaluated the three gap detection methods described in the pre-
vious section on three datasets of real world networks that are represented as
directed graphs. The first dataset is a network extracted from a Japanese blog
service site “Ameba”1, which has 56, 604 nodes representing blogs in “Ameba”
and 734, 737 directed links among them. Each directed link is constructed from
1 http://www.ameba.jp/
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Fig. 1. Centrality values and their standard deviations of the top 1, 000 nodes in
descending order of the true value of each centrality in the Ameblo, Cosme, and Enron
networks

blog u to blog v if blog u is registered as a favorite one in blog v. We refer to this
network as the Ameblo network. The second one is a network extracted from a
Japanese word-of-mouth communication site for cosmetics, “@cosme”2, consist-
ing of 45, 024 nodes representing its users and 351, 299 directed links, in which
a link (u, v) means that user v registers user u as her favorite one. We refer to
this directed network as the Cosme network. The last one is a network derived
from the Enron Email Dataset [9], which has 19, 603 nodes and 210, 950 links. In
this network, a node is an email address that appears in the dataset as either a
sender or a recipient, while a directional link (u, v) between two email addresses
u and v means that u sent an email to v. We refer to this directed network as
the Enron network. These three networks are not very huge, but large enough
to investigate the basic performance of the three methods from various angles.
We thus simply use the standard deviation σ derived from S to compute the
resampling and standard errors.

Figures 1(a) to 1(c) show the top 1,000 nodes in descending order of true
value of the closeness centrality in the Ameblo, Cosme, and Enron networks,
respectively, while Figures 1(d) to 1(f) show the top 1,000 nodes in descend-
ing order of true value of the betweenness centrality for the same three net-
works. We only plotted the top 1,000 nodes because we are interested in nodes
having high centrality values. In each figure, the horizontal axis indicates the val-
ues of corresponding centrality, and the vertical axis shows its standard
2 http://www.cosme.net/



142 K. Ohara et al.

deviation defined as σµG
(u) =

√
(|V | − 1)−1

∑
v∈V,v �=u (fu(v)− μG(u))2, where

μG(u) sands for either clsG(u) or btwG(u), and fu(v) is 1/splG(u, v) for clsG(u)
and btwG(u; v)/(|V | − 2) for btwG(u). From these figures, we can observe that
higher-ranked nodes in each centrality measure are distinguishable from each
other in every network because of their distinctive values of the centrality, while
it looks hard to do the same for lower-ranked nodes. This tendency can be
found more clearly in the plots for the betweenness centrality in which nodes
are scattered over a larger area. From these observations, we can expect that it
is harder to detect gaps that exist between lower-ranked nodes compared to the
ones between higher-ranked nodes and that more gaps can be detected for the
betweenness centrality than for the closeness centrality.

4.2 Results

We applied the naive, SE, and RE methods to the three networks mentioned
above for the closeness and betweenness centralities, and examined the number
of gaps they detected and how many gaps among them were correct. A correct
gap is the one that the resulting upper half set VH(vk;T ) corresponds exactly to
the true upper half set that is a set of the top k nodes in the descending order
of the true centrality value. In this experiment, we adopted the confidence level
of 95% (α = 0.05) as a typical one and fixed it, while we varied the coverage
|T |/|V | from 0.01 to 1.00 by 0.01 points to see how the number of gaps detected
changes according to the coverage. More precisely, we randomly sampled nodes
from V without replacement, added it to the subset T one by one, and counted
the number of gaps detected and the number of gaps correctly detected each time
the coverage increases by 0.01. Since we are interested in nodes having a high
centrality value, we considered only the top K nodes in descending order of the
estimated value of the corresponding centrality at each coverage. We repeated
this process R = 1, 000 times and computed the average over them.

Figure 2 shows the results for the closeness centrality in the case of K = 100.
The horizontal axis means the coverage, and the vertical axis means the number
of gaps. The blue solid line and the red broken line represent the number of
gaps detected and the number of gaps incorrectly detected by the corresponding
method, respectively, which are defined as follows:

(# of gaps detected)
1
R

R∑

r=1

|A(c, r)|
|Anv(c, r)| ×K (6)

(# of gaps incorrectly detected)
1
R

R∑

r=1

|A(c, r) \A∗(c, r)|
|Anv(c, r)| ×K, (7)

where A(c, r) is the set of nodes corresponding to gaps, i.e., A in the algorithm in
Section 3 detected by the respective method at coverage c in the r-th iteration,
while A∗(c, r) is the set of nodes correctly detected among them. It is noted that
since some of the top K nodes may have the same estimation, these numbers
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Fig. 2. Fluctuation of the number of gaps detected by the naive, SE, and RE methods
as a function of the coverage for the top K = 100 nodes in descending order of the
estimated value of the closeness centrality in the Ameblo, Cosme, and Enron networks

are normalized by the number of gaps detected by the naive method |Anv(c, r)|
that corresponds to the number of node pairs vi and vi+1 having different esti-
mations. Thus, the blue solid line for the naive method always exhibits the best
performance (=K).

From these results, it is found that although the number of gaps incorrectly
detected by the naive method decreases as the coverage becomes larger, it is
much larger than the ones by the other two methods that are almost exactly
0. Whereas, the number of gaps detected either by the SE or RE method is
very small compared to the one by the naive method. Especially, the number of
gaps detected by the SE method increases only a very little even if the coverage
becomes closer to 1.0. On the other hand, the number of gaps detected by th
RE method is slightly larger than the one by the SE method while the coverage
is small, but it rapidly increases at around c = 0.9 and finally becomes 100
while the number of gaps incorrectly detected remains almost 0. This difference
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Fig. 3. Fluctuation of the number of gaps detected by the naive, SE, and RE meth-
ods as a function of the coverage for the top K = 100 nodes in descending order of
the estimated value of the betweenness centrality in the Ameblo, Cosme, and Enron
networks

comes from their nature that the resampling error RE(v; |T |) converges to 0
as |T | approaches to |V |, while the standard error SE(v; |T |) does not. These
tendencies are also observed in the results for the betweenness centrality shown
in Fig. 3.

Next, we examined in the cases of K = 10 and 1, 000. Due to the page
limitation, we will show only the results for the Ameblo network here, but we
observed the same tendencies for the others. Figures 4 and 5 show the results
for the closeness centrality and for the betweenness centrality, respectively. From
Figs. 4(a) and 5(a), the number of gaps incorrectly detected by the naive method
is relatively small compared to the results for K = 100 although it is still larger
than the ones by the other methods that are almost 0 in this case, too. This is
because the higher-ranked nodes in the true centrality value are distinguishable
as shown in Fig. 1. Due to the same reason, the number of gaps detected either
by the SE or RE method is relatively large compared to the case of K = 100.
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Fig. 4. Fluctuation of the number of gaps detected by the naive, SE, and RE methods
as a function of the coverage for the top K = 10 and K = 1, 000 nodes in descending
order of the estimated value of the closeness centrality in the Ameblo network
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Fig. 5. Fluctuation of the number of gaps detected by the naive, SE, and RE methods
as a function of the coverage for the top K = 10 and K = 1, 000 nodes in descending
order of the estimated value of the betweenness centrality in the Ameblo network
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It is more clearly found that the RE method can correctly detect more gaps
than the SE method does at the same coverage by comparing Figs. 4(b) and
4(c) for the closeness centrality, and by comparing Figs. 5(b) and 5(c) for the
betweenness centrality. Furthermore, as expected above, by comparing Figs. 4(b)
and 5(b), we can observe that the number of gaps detected by the SE method
for the betweenness centrality is larger than that for the closeness centrality.
The similar tendency can be observed for the RE method from Figs. 4(c) and
5(c). On the other hand, we can observe from the results for K = 1, 000 that the
number of gaps incorrectly detected by the naive method is relatively large, and
the number of gaps detected by the other methods is relatively small, compared
to the other results. This result demonstrates our expectation that it is harder
to correctly detect gaps that exist between lower-ranked nodes.

To summarize the above results, the naive method is not reliable for a large
K. It can detect many gaps correctly for a small K, say 10, but it detects
incorrect gaps if the coverage is low. This is not desirable as a means to reduce
the computational cost for detecting nodes having a high centrality value. On
the other hand, the SE and RE methods satisfactorily detect gaps correctly
regardless of the value of coverage. The SE method is more conservative by
overestimating the error margin and less useful than the RE method in terms
of the number of gaps detected at the same coverage. Note that although the
number of gaps detected by the RE method is limited for a low coverage, the
resulting gaps are more likely to appear between nodes having a high centrality
value, which is desirable for us to detect important nodes in a network.

5 Conclusion

In this paper, we addressed a problem of identifying nodes having a high cen-
trality value in a social network based only on its approximation derived from a
limited number of sampled nodes. To this end, we focused on confidence intervals
of true centrality value for each node, and considered detecting gaps that divide
a set of nodes into two groups so that any node in one group has a higher central-
ity value than any one in another does with a given confidence level. To estimate
confidence intervals as accurately as possible, we employed the resampling-based
framework for estimation of the approximation error, and devised an algorithm
that can efficiently detect gaps whose computational complexity is O(|V |log|V |)
for the number of nodes in a network, |V |, which is much less than O(|V |3)
of the straightforward approach. Through extensive experiments on three real
world social networks for the closeness and betweenness centralities, we empir-
ically confirmed that the proposed method can correctly detect gaps that exist
between high-ranked nodes with the confidence level of 95% even for a partial
network whose coverage is small, say 0.2, and can detect more gaps compared
to the one that uses the standard error to estimate confidence intervals at the
same coverage ratio. Especially, the ratio of gaps incorrectly detected to the total
number of detected gaps is almost 0 for both the methods. It is noted that the
method we proposed is not only specific to identification of nodes having a high
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centrality value, but also applicable to any other estimation problems to which
the resampling-based estimation framework is applicable. We believe that the
conclusions obtained in this paper can generalize but we have yet to test out the
proposed method in a broader setting and in different domains, too.
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